DON'T PANIC

The Hitch Hiker’s Guide to Grobner Bases:

commutative algebra for amateurs

Krister Forsman, Dept. Electrical Engineering
Linkoping University, S-581 83 Linkoping, Sweden

email: kristerQ@isy.liu.se

1992-02-03

Abstract. This report is about Grobner bases. It is an attempt to explain a little what Grobner
bases are about without introducing commutative algebra, and to show how to use them for solving equation
systems. However, being very compact, the report is far from complete. There are lots of examples and Maple
computations in the report. Also, it has the words DON’T PANIC inscribed in large friendly letters on its

cover.

1 Polynomial Equations

Grobner bases (let’s call them GB for short) are all about solving systems of equations.
Nonlinear equations, that is. Actually, we will only allow polynomial nonlinearities. ..
Suppose we want to solve the system

Byt —2 =10 (1)
Py ty—1=0 (2)

It is probably a good idea to try and eliminate one of the variables to get an equation in one
variable only. We can take y-(2) — (1) to get

Y -y+2=0 (3)

So the y solving the system (1)-(2) have to satisfy (3). This was pretty simple. But what
about 27 One way to find out about that is to use (3) in (2) in order to get

Py-2)+y-1=0 (4)
that is
y(a2® +1) = 1+ 227 (5)
that is 228 11
y = (6)

x> 41
If we take this, plug it into (3) and clear denominators we get
42° +52° 42 = 0 (7)

- But these computations were totally heuristic! There has to be a way of doing this
systematically!
- You bet there is. ..

2 Grobner Bases

GB:s provide a method for eliminating variables from a system of multivariate, polynomial
equations. (A multivariate polynomial is a polynomial in several variables.) What operations
are allowed during the elimination process? To answer this question we start by adopting
the practical convention that all equations are written in normal form, i.e. with right hand
side zero. This means that we only have to bother about the left hand sides - instead
of manipulating equations we manipulate polynomials. Now during the elimination new
polynomials p are formed from pairs of old ones fi, fo in the following way:

p=afi+ 8/ (8)

where a, 3 are polynomials. The set of all such p is called the ideal generated by fi, fo. In
section 6 you can read more about ideals. This means that all new polynomials formed have
those zeroes that are common to the original ones (and maybe some extra: see section 5).

What the GB-algorithm does is it chooses the a and 3 in (8) cleverly. For further details,
see section 6.

So when the algorithm terminates it has produced a set of polynomials which are a
consequence of the original ones. Some members of this set are more interesting than others:
see below.

The really nice thing with GB:s is that there are many computer programs available to
calculate them; for more information, see section 3. Here I will only tell how to do it in
Maple. The only thing you have to know to be able to use the Maple GB-package is the
following:

There are some parameters in the GB-calculations that are to be chosen by the user. The
most important one is the ranking of the variables. This ranking determines which variables
to eliminate first. For example if we want to eliminate x in order to get a polynomial in y
only, then x should be higher ranked than y, written

Ty (9)
(there is no standard notation here, yet). For the example above the GB is
{y — 3 — 42°, 42°® + 52° 4 2} (10)
w.r.t. the ranking y > «, and
(B-y+42®, y* —y+2} (11)

w.r.t. the ranking = > y. Thus the last element of the GB in these two cases is a polynomial
in one variable only: the algorithm has done the elimination for us.
In the next section I will tell you how to compute a GB in Maple.

Remarks:

1) GB:s were invented by Bruno Buchberger who was a student of the great algebraist
Wolfgang Grobner (1899-1980).

2) If you want to read more about Grébner bases, check out the articles [4, 5, 11] or
chapter 3 in the book [7].

3) If there are no solutions whatsoever to a system of equations then the GB is 1.

3 Programs for Computing GB:s

The symbolic algebra programs Maple [6], Reduce [9], Macsyma [14], and Mathematica [15]
all contain packages for GB computations, some more advanced than others. ..

As I said I'm only going to consider the Maple GB-package here.

To load it you type with(grobner): once you started Maple. The function for com-
puting GB:s is called gbasis and it has the syntax

ghasis(pollist,varlist,to)
where

e pollist is a list containing the polynomial lhs:s of the original problem

e varlist is a list containing the variables of the polynomials. This list determines the
ranking of the variables: the highest ranking variable first and the lowest one last.

e to is a term ordering. I haven’t told you about that yet, but that’s only because you
don’t have to worry about it: only put it to plex (advanced user’s may have a look in
section 6 to learn more about this).

The example in sections 1 and 2 looks as follows in Maple:

> f1:=x"3%y"3-2;

> £2:=x"3*%y " 2+y-1;
f2 :=x y +y -1

> with(grobner):
> Gl:=gbasis([f1,f2],[y,x],plex);

3 3 6
Gl :=[y-3-4x,2+5x +4zx]

> G2:=gbasis([f1,f2],[x,y],plex);

3 2
G2 ;= [-y+3+4x,y -3+ 2]

4 Comparison with Numerical Methods

But if we want to solve equations, why make things complicated? Why don’t we just use
good ol” numerical methods? Well, there are two categories of reasons:

e there are some things you can’t do with numerics

e there are some not-so-nice properties of numerical methods
Among the things you can’t do with numerics is
e you can’t have parameter solutions

Le. your system has to have finitely many solutions, which is pretty obviuos: compare with
linear algebra where you can’t invert a singular matrix.
Some of the non-nice properties of numerical methods for equation solving are:

e which solution is found depends on the initial guess in a really messy way (ever heard
about chaos and fractals?) for Gauss-Newton.

e it is difficult to know for sure that all the solutions have been found

Of course there are disadvantages with GB:s too, the most severe one being the compu-
tational complexity. It seems to be a nice idea to combine numerics and symbolics to gain
the advantages and evade the disadvantages of both.

5 Caveats

Even if GB:s are great there are some things you should bear in mind, not to mess things up.

Firstly, if you’re an engineer you're probably looking for solutions in IR". GB:s don’t
care about this (you have to realize that this is a really, really tough problem). This means
that after you did the elimination to get a polynomial p, say, you have to check if a zero of
p corresponds to a real zero of all polynomials in the GB. For example, suppose you have

obtained the GB
{y2_$7 $2_ 1} (12)

There are two real zeroes of the last polynomial: z = 1, x = —1, but if you plug z = —1 into
the first polynomial you get y? + 1 which doesn’t have a real zero.

The second caveat is similar to the first one, only worse: it might happen that a zero of p
doesn’t even correspond to a complex zero of the other polynomials. The simplest example
I know of is

fo2 -1,y o} (13)
Here x = y = 0 is a zero of the last polynomial, while this makes the first polynomial

identically 1.

The moral is: don’t just look at the last element of the GB, even if this is what you were
looking for originally.

6 Some Advanced Stuff

OK, now that we know how to use GB:s we may dive into some formal, theoretical discus-
sions. [will allow myself to jump freely between different aspects of GB:s and Buchberger’s
algorithm. I’ll even make some formal definitions!

6.1 Some Words about Commutative Algebra

Definition 6.1 The set (or ring, if you will) of polynomials in the variables z1,...,z, with
coefficients from k is denoted k[zy, ...,2,]. Here k can be e.g. Q,IR, C. O
Definition 6.2 Let py,...,p, € K[z, ...,2,]. The ideal generated by the p; is the set of
all polynomials f that can be written f = aypy + ...+ aypy, for some a; € k[xy, ... 2,]. It
is denoted (p1,...,pm). a

The theory of ideals and their cousins is called commutative algebra or, if the main interest
is in the zero-sets of the polynomials, algebraic geometry. There are no beginner’s books on
commutative algebra, but one of the most basic ones is [2]. Some books about algebraic
geometry are [12, 10]. None of these contain anything about GB:s.

A GB is a special generating set of an ideal. It has the following property:

Theorem 6.1 Let x,y be two sets of variables. If G is a Grébner base for the ideal I C K[z, y]
w.r.t. the ranking x < y then
INnk[z] = (GnNEk[z])

Proof. Proven in [5]. O

When z,y are sets, then by z < y [mean that all elements of z are lower ranked than all
elements of y.

It turns out that, with some extra requirements, GB:s are unique, so we may write G B([I)
for the Grobner base of 1.

There is one more thing I would like to explain about commutative algebra: it is the
concept of algebraic dependence.

Definition 6.3 py,...,p, € K[2q, ..., 2,] are algebraically dependent over k if there is a
nonzero polynomial f € k[Xq,..., X,,] such that f(p1,...,pm) = 0. O

There is a nice way to retrieve the dependency relation f using GB:s, which is described
in e.g. [13]. The idea is simply to form the ideal

I'= (21— pi(2), 22 = pa(2), -y 2 — Poa(@) (14)

and then compute G'B(I) w.r.t. some ranking that eliminates the z;. The z; are called tag
variables.

6.2 Another Useful Maple Function

A term ordering is a total ordering of all monomials in k[xq, ...,x,], satisfying some ax-
ioms [11]. There are term orderings other than plex. These don’t do elimination but are
useful anyway, because some of them have a much lower complexity. The Maple function
finduni first computes a GB w.r.t. a term order different from plex and then uses some lin-
ear algebra to find a univariate polynomial (in a given variable) belonging to the ideal. The
reasons that this is often not enough are those mentioned in section 5. The idea is explained
in [3]. An example of how to use finduni:

> f1:=x"3*%y"3-2: f2:=x"3%y " 2+y-1:
> finduni(y, [£1,£2],{x,y});
2

y -y +t+t2

> finduni(x, [f1,£2],{x,y});
3 6
2+5x +4x

6.3 Buchberger’s Algorithm

The operations performed by Buchberger’s algorithm are of two kinds: remainders and S-
polynomials. The remainder and S-polynomial both depend on the term-ordering used. An
example: we are using plex with ranking y > x. This means that, for instance,

o>yt >yt >y’ > oy > (15)

Define the initial term of a polynomial as the highest ranked term of that polynomial, so
that the inital term of (2) is y?z3. When taking the remainder of f; w.r.t. fo we check if
the inital term of f, divides any term of fi. If it does we subtract a suitable multiple of
fo. What we did to get (3) was simply to take the remainder of (1) w.r.t. (2). The Maple
function normalf computes the remainder of a polynomial f w.r.t. a list F' of polynomials.
In order for this to be meaningful, F should be a GB, unless it consists of one element only.
The syntax of normalf is: normalf (f,F,vars,to). For example:

> f1:=x"3*%y"3-2: f2:=x"3%y " 2+y-1:
> normalf(£f1,[£2],[y,x],plex);
2

-y ty-2

The S-polynomial of two polynomials is a kind of pseudo remainder. Let us denote the
initial term of the polynomial f by in f. We have

Definition 6.4 Let fi, fo € k[zy, ..., 2,]. The S-polynomial of f; and f; is defined
S(fi,fa) = hfi = hafa (16)

where lemfi)
By = cm(u.l fi,in fg)7 B
in fi

_lem(in f1,in f5)
a in fo

It is proved in [4] that by just taking remainders and S-polynomials a Grébner base is
obtained in a finite number of steps. The Maple function spoly computes S-polynomials. It
has the syntax spoly(pl,p2,vars,to).

6.4 Relations with Other Algorithms

- How do GB:s relate to other algorithms for special cases of equation systems?

Well, in the special case where all polynomials are linear, Buchberger’s algorithm is equi-
valent to Gaussian elimination and in the case of two univariate polynomials it is identical
with Fuclid’s algorithm.

6.5 An Application to Control Theory

Of course there are lots and lots of applications of Grébner bases to all kinds of science and
technology. Applications to control theory can be found in [8].

Let me give one application to nonlinear systems. The problem is to find the input-output
relation for a nonlinear system given in state space form. We assume that all nonlinearities
are polynomial (as a matter of fact I can do it for rational functions, too). We then have

ilzfl(fau)v cee in:fﬂ(%“)v y:h(xvu) (18)

What we do now is we differentiate y w.r.t. time and replace all &; with f; (formally, we take
Lie derivatives). In this manner we get two polynomials hg, hy in z1,...,2,,u, @, subscript
on h denoting time derivatives. We continue to do this until we reach y,. Now, there is
a rather elementary theorem in commutative algebra that states that hg, ..., h, have to be
algebraically dependent [8]. So we proceed as described in section 6.1 to find the dependency
relation, i.e. the I/O-relation. The y; work as tag variables!

A simple example:

i1 = u— a7, &y =) — 229, Yy = a1 (19)
We get that
I = (3/0 — T, Y1 — Uo + ¥1%3, Yo — ur + (ug — T129)T2 + w1(2] — 2952)) (20)
The Grébuner base GB(I) w.r.t. the ranking
To = Ty > Y2 > Y1 > Yo > UL > Ug (21)

is easily computed. It contains one polynomial in the w; and y;, namely

P = Yoy2 + 290y1 — 2Y0to — Your + Yo — Yi + y1to (22)
We conclude that the I/O relation for the system (19) is

(G+29—2u—a+y°)y—y" +uy = 0 (23)

Of course you can do this for discrete time systems too.

References

[1] D. Adams. The Hitch Hiker’s Guide to the Galaxry. Pan Books, 1979.

[2] M.F. Atiyah and I.G. MacDonald. Introduction to Commutative Algebra. Addison-
Wesley, 1969.

[3] W. Boege, R. Gebauer, and H. Kredel. Some examples for solving systems of algebraic
equations by calculating Grébner bases. J. Symbolic Computation, 1:83-98, 1986.

[4] B. Buchberger. Ein algorithmisches Kriterium fiir die Losbarkeit eines algebraischen
Gleichungssystems. Aequationes Mathematicae, 4:374-383, 1970.

[5]

[10]

[11]

[12]

B. Buchberger. Grébner bases: An algorithmic method in polynomial ideal theory. In
N.K. Bose, editor, Multidimensional Systems Theory, pages 184-232. Dordrecht Reidel,
1985.

B. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, and S.M. Watt. Maple Reference
Manual. Symbolic Computation Group, Univ. of Waterloo, fifth edition, March 1988.

J.H. Davenport, Y. Siret, and E. Tournier. Computer Algebra. Systems and Algorithms
for Algebraic Computation. Academic Press, 1988.

K. Forsman. Constructive Commutative Algebra in Nonlinear Control Theory. PhD
thesis, Dept. Electrical Engineering, Linképing University, S-581 83 Link6ping, Sweden,
1991.

A.C. Hearn. Reduce User’s Manual Version 3.4. RAND Corp., Santa Monica, California,
USA, July 1991.

E. Kunz. Introduction to Commutative Algebra and Algebraic Geometry. Birkhduser,
1985.

F. Pauer and M. Pfeifhofer. The theory of Grébner bases. L’Enseignement Mathé-
matique, 34:215-232, 1988.

M. Reid. Undergraduate Algebraic Geometry, volume 12 of London Mathematical Society
Student Texts. Cambridge University Press, 1988.

D. Shannon and M. Sweedler. Using Grobner bases to determine algebra membership,
split surjective algebra homomorphisms and determine birational equivalence. In L. Rob-
biano, editor, Computational Aspects of Commutative Algebra, pages 133-139. Academic
Press, 1989. From J. Symb. Comp. Vol. 6, nr. 2-3.

Symbolics Inc. Macsyma Reference Manual, November 1988. Version 13.

S. Wolfram. Mathematica. A System for Doing Mathematics by Computer. Addison-
Wesley, second edition, 1991.

